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1 INTRODUCTION

Throughout this paper, all rings are commutative with
identity and if R is a ring, then Z(R) denctes the set of
zerodivisors of R and Nil(R) denctes the set of nilpotent
elements of R. Our main purpose is to provide another

ganeralizhticn of pseudo~valuation domaind‘( as introduced in

{10] ) to the context of arbitrary rings { with Z(R)
possibly nonzero ). Recall from [10] that an integral domain
R with qﬁotient field K is called a pseudo-valuation domain
fPVD) in case each prime ideal P of R is strongly prime (or a
strong prime), in the sense that xy € P, x € K, Y € K implies
that either x € P or y € P. Anderson, Dobbs, and the author
in (7] generalized the study of pseudo-valuation domains to
the context of arbitrary rings. Recall from [7] that a prime
ideal P of a ring R is said to be strongly prime (or a strong
prime) if aP and bR are comparable for all a,b € R. If R is
an integrdl domain this is equivalent to the original
definition of strongly prime as introduced by Hedstrom and
Houston in [10] (cf. [1, Proposition 3.1}, [2 Propogition
4.2], and (5, Proposition3)). 1If each prime ideal of R is
strongly prime, then R is called a pseudo-valuation ring

{PVR) .
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2 RESULTS

First, recall from [6] and (8] that a prime ideal of R
is called divided if it is comparable to every principal
ideal of R; ‘equivalently, if it ia comparable to every ideal
of R. 1If every prime ideal of R is divided, then R is called
a divided ring. '

In the following proposition, we show that if a ring R
admits a strongly prime ideal, then Nil(R) is a strongly
prime ideal and thus Nil(R) is a divided prime. This result
justifies our focus in studying pseudo-valuation rings to be
restricted to rings R where Nil(R) is a divided prime.

PROPOSITION O Let P be a strongly prime ideal of a ring R.
Then the prime ideals of R contained in P are strongly prime
and are linearly ordered. 1In particular, Nil(R) is strongly
prime and therefore it is a divided prime.

Proof: Let Q be a prime ideal of R contained in P. By
applying the same argument as in the proof of {7, Theorem 2],
we conclude that Q is strongly prime. By {7, Lemma 1), P is
comparable to every prime ideal of R and the prime ideals of
R contained in P are linearly ordered. ‘Hence, Nil(R) is=s
prime and therefore it is strongly prime and divided.

Now we state our definition of $-pseudo-valuation
ringsa.

DEFINITION Let R be a ring such that Nil(R) is a divided
prime, let S be the set of nonzerodivisors of R, let T= R, be
the total quotient ring of R, and let K = Ryim. Define ¢ :
T — K by ¢(a/b) = a/b for every a€Randb € S. Then ¢
is a‘ring homomrphism from T into K, and ¢ restricted to R is
also a ring homomorphism from R into K given by o(x) = x/1
for every x € R. Also, observe that ¢(R) is a subring of K
with identity. A prime ideal Q of ®(R) is called K-strongly
prime if xy € Q, x € K, ¥ € K implies that either x ¢ Q or

Y € Q. If each prime ideal of ¢(R) is K-strongly prime, then
®(R) is called a K-pseudo-valuation ring (K-PVR). A prime
ideal P of R is called ¢-strongly prime, if ¢(P) is a K-
strongly prime ideal of ¢(R). If each prime ideal of R is
9-strongly prime then R is called a ¢~paaudo-valuation ring
(¢~PVR). Observe that Q is a prime ideal of ¢(R) if and only
if Q = ¢(P) for some prime ideal P of R, and R is a ¢-PVR if
and only 4f ¢(R) is a K-PVR.
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Throughout this section, R denotes a commutative ring
with identity such that Nil(R) is a divided prime. Given a

ring R, let K =Ruiny and T = R,, where 8 is the set of
nonzercodivisors of R.

Obgerve that an integral domain R is a PVD if and only
if it is a ¢-PVR. 1In fact, in Corollary 7, we show that a
PVR (in the sense of (7]) is always a ¢-PVR. _Also, observe
that a quasilocal zero~dimensional ring is a ¢-PVR. The

following is an example of a zero-dimensional ¢-PVR that is
not a PVR.

EXAMPLE 1 ({7, Remark 15)) Let K be a field, X,Y, and 2z be
indeterminates, and R = K(X,Y,2] / (x%,¥%,2%) = K(x,y,z].
Then R is quasilocal zero-dimensional with maximal ideal
Nil(R) = (X,Y,2) / (X%,Y%,2%) = (X,¥,2); hence R is a
¢-PVR. However, R is not a PVR since xz € yR and y ¢
xNil(R). : '

PROPOSITION 2 For a ring R, we have the following :

(1) Ker (¢) is contained in Nil(R).

(2) ®(R) is an integral domain if and only if for every
nonzero w € Nil(R) there exists a z ¢ Z(R)\Nil(a) such that
zw = 0 in R, ‘ -

Proof: (1). Let x ¢ Ker(¢). Then x = a/b for some a ¢ R
ind b € 8 such that %(a/b) = a/b = 0/1 in K. Hence, za = 0
ln R for some z ¢ Z(R)\Nil(R). Thus, a € Nil(R) since Nil(R)
le prime. Hence, x = a/b = w € Ni1(R) since b € S and
1i1(R) is divided. (2). Suppose that ®(R) is an integral
lomain. Since R/Ker(¢) = ¢(R) and Ker(¢) < Nil(R), we have
‘er(¢) = Nil(R), and the claim is now clear. Conversely,
lince for every nonzero w € Nil(R) there is a z ¢ Z(R)\Ni1(R)
ach that zw = 0 in R, we have Ker(¢) = Nil(R). Since Nil(R)
8 prime and R/Nil = ®(R), ®(R) is an integral domain.

ROPOSITION 3 For a ring R, we have the following:
1). Nil(T) = Nil(R) and Nil(K) = Nil(®(R))= ¢(NL1(R)).
2). Let x ¢ Nil(K) and write x=a/b for gsome a € R and

€ R\Nil(R). Then a € Nil(R) and x = a/b = w/l in K for
me w € Nil(R).
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(3). Let x € K and write x = a/b for some a € R and

b € R\Nil(R). If a/b = i/1 in K for some i € R, then b|a in
R; in particular, a = (i+w)b in R for some w € Nil(R), and
therefore a is contained in every prime ideal of R which
contains i.

(4). Let x € R and y € R\Nil(R). If x/1 = y/1 in K, then x
= uy in R for some unit u of R; in particular, (x) = (y) in
R. .

Proof: (1). Note that Nil(T) = Nil(R) since Nil(R) is a
divided prime ideal of R. For the second equality, we only
need show that Nil(K) < Nil(¢(R)). Let x € Nil(K) and write
x = a/b for some a € R and b € R\Nil(R). Since Nil(R) is
prime, it follows that a € Nil(R). Since Nil(R) ie a divided
prime and a € Nil(R) and b € R\Nil(R), x = a/b = w/1 for some
w € Nil(R). Thus, x € Nil(¢(R)). (2). Clear by the proof of
(1). (3). Since a/b = i/1 in K, z(a-bi) = 0 in R for some

. 2 € R\Nil1(R). Thus, a-bi = c € Nil(R) since Nil(R) is prime.
Since b € R\Nil(R) and Nil(R) is a divided prime, ¢ = wb for
some w € Nil(R). Hence, a-bi = ¢ = wb. Thus, a = (i+w)b.
(4). Since x/1 = y/1 in K, z(x-y) = O in R for some

z € R\ Nil(R). Thus, x~y = w € Nil (R). Once again, since Yy
€ R\Nil(R), w = dy for some d € Nil(R). Hence, x-y = w = dy.
Thus, x = (l+d)y. Since 1+d is a unit of R, the claim is
clear. ‘

In light of the above proposition, observe that K is
quasilocal, zero~dimensional, and a K-PVR with maximal ideal
Nil(®(R)). In general, let A be a divided ring and I be an
ideal of A, and let R = A/I. Then K is a K-PVR with maximal
ideal Nil(¢(Rad(I)/I)), where Rad(I) is the radical ideal of
I in A, -

- The following result is an analogue of {10, Corollary
1.3) and (7, Lemma 1), also see [4, Proposition 1].

PROPOSITION 4 Let P be a ¢-strongly prime ideal of R. Then
P (resp., ¢(P)) is a divided prime. In particular, if R is a
¢-PVR, then R (resp., ¢(R)) is a divided ring and hence is
quasilocal.

Proof: Deny. Then for some ideal I of R, thera is an i ¢
I\P and a p € P\I. Since Nil(R) ¢ P, i € R\Nil(R). Hence,




—
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(p/L)(1/1) = p/1 € ¢(P). Since i/1 ¢ ¢(P) by Proposition
3(4), p/i € ¢(P). Hence, 1‘9 in R by Proposition 3(3). Thus,
p € I which is a contradiction.

The following result is an analogue of [10, Theorem
1.4), (2, Proposition 4.8}, [4, Propositon2), and [7, Theorem
2]. '

PROPOSITION 5 1. Let P be a ¢-strongly prime ideal of R and
suppose that Q is a prime ideal of R contained in P. Then Q
is ¢-strongly prime. In particular, R is a ¢~PVR if and only
if some maximal ideal of R is ¢-strongly prime.

2. Let P be a K-strongly prime ideal of ¢(R). If Q is a
prime ideal of ¢(R) contained in P, then Q is K-strongly
prime. In particular, ¢(R) is a K-PVR if and only if some
maximal ideal of ¢(R) is K-strongly prime.

Proof: (1). Suppose that xy € ¢(Q) for some x € K and Yy €
K. If xy € Nil(®(R)), then either x € Nil(¢(R)) c ¢(Q) or

Y € Nil(¢(R) c ¢(Q) since K is a K~PVR with maximal ideal
Nil(®#(R)). Hence, we may assume that xy € Nil(¢(R)) and

x € K\¢(R). Since xy € ¢(P) and x € K\¢(R), we must have

Y € ®(P). Since x(y’/xy) = y € o(P) and x €K\¢(R), we must
have y’/xy = p/1 € ¢(P) for some p € P. Thus, y’ = (xy) (p/1)
in K. Since xy € ¢(Q), ¥y’ € ¢(Q). Thus, y € ¢(Q). (2). Since
every prime ideal of ¢(R) is of the form ¢(G) for some prime
ideal G of R, the claim is clear.

The fgllowing lemma is an analogue of [10, Proposition "
1.2). 8ince the proof is exactly the same as in [10], we ,
leave the proof to the reader. g

LEMMA 6 A prime ideal P of R is ¢-strongly prime if and only i
if x7'¢(P) c ®(P) for every x € K\O(R). 3*
, i

;0N

COROLLARY 7 (1). A prime ideal P of R is ¢-strongly prime
if and only if for every a,b € R\Nil (R), either a|b in R or
aP cbP.

(2). A ring R is a ¢-PVR if and only if for every

a,b € R\Nil(R), either a|b in R or bjac in R for every
nonunit ¢ of R.

(3). If R is a PVR, then R is a ¢-PVR.
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Proof: (1). Suppose that P is ¢-strongly prime and

a,b € R\Nil(R) such that a/b in R. Then b/a € K\®(R) by
Proposition 3(3). Let p € P. Then (a/b)(p/l) = q/1 in K for
some @ € P by Lemma 6. Thus, ap = (q+w)b in R for scme

w € Nil(R) by Proposition 3(3). Hence, ap € bP in R. Thus,
aP c bP in R. Conversely, suppose that for every

a,b € R\ Nil(R) either a|b or aP c bP. Let x € K\¢(R). Then
x = b/a for some a,b € R\NL1(R) (cbserve that b € Nil(R)
since Nil(R) is divided). Hence, a/b in R by Proposition
3(3). Thus, aP c bP in R. Hence, (a/b) ¢(P) < ¢(P). Thus,
P is ¢-strongly prime by Lemma 6. (2). If R is a ¢-PVR with
maximal ideal M, then the claim is clear by (1). Conversely,
since for every a,b € R either a|b” or b|a® for some n,m 2 1,
the prime ideals of R are linearly ordered by [5, Theorem 1].
Hence R is quasilocal with maximal ideal M. Once again, the
claim is clear by (1). (3). This is clear by [7, Theorem 5].

REMARK 8 It was shown in [7, Theorem 5] that a ring R is a
PVR if and only for every a,b € R, either a|b or b|ac for
every nonunit ¢ of R. Thus, Corollary 7(2) gives a clear
difference between a PVR and a ¢-PVR.

The first part of the following proposition follows
easily since the prime ideals of a divided ring R are
linearly ordered and Z(R) is a union of prime ideals of R.

PROPOSITION 9 Let R be a divided ring. Then

(1) Z(R) is a prime ideal of R.

(2). If x € T\R, then x* € T,

Proof: (2). Let x = a/b € T\R for some a € R and b € 8. Then
a € S gince R is divided. Hence, x' = b/a € T.

Given an ideal I of R, then I:I = {x€T : xIcI) and

®(I) ¢ o(I) = {x€K : x¢(I) < ¢(I)}

PROPOSITION 10 Let R be a quasilocal ring with maximal
ideal M. Then

(1). R is a ¢-PVR if and only if M:M is a ¢-PVR with maximal
ideal M.

(2). ®(R) is a K-PVR if and only if ¢(M) : ¢(M) is a K-PVR
with maximal ideal ¢(M).
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proof: (1). Suppose that R is a ¢-PVR. Let x € M:M\R. Then
¢(x) € K\9(R) by Proposition 3(3). Since x is a unit of T by
proposition 9(2), ¢(x')o(M) = o(x) 'o(M) c ¢(M) by Lemma 6.
Thus, x* € M:M. Thus, x is a unit of M:M. Hence, M is the
maximal ideal of M:M. Thus, M:M is a ¢-PVR since ¢(M) is K-
strongly prime. The converse is clear. (2). This follows
by a similar argument to that in (1).

Recall that a ring B is called an overring of R (resp.,
#(R)) if Rc B c T (resp., ®(R) < B c K).

PROPOSITION 11 Suppose that R is a ¢-PVR with maximal

ideal M.

(1). If B is an overring of ¢(R) which contains an element
of the form 1/s for some nonunit s € R\Nil(R), then x' eB
for every x € K\¢(R). Furthermore, B is a K-PVR.

(2). If B is an overring of R which contains an element of
the form 1/s for some nonunit 8 € 8, then x* € B for every

x € T\R. Furthermore B is a ¢®-PVR.

Proofs (1). Suppose that B is an overring of ¢(R) which
contains an element of the form 1/s for some nonunit

s € R\Nil(R). Let x € K\¢(R). Then x'(s/1) € ®(M) © &(R) by
Lemma 6. Hence, x* = (x's)/s € B since s € B. Now, let N
be a maximal ideal of B and xy € N for some X,y € K with

x € K\@(R). Then y = x™'(xy) € N since x* € B. Thus, N is
K-strongly prime. Hence, B is a K-PVR. (2). Suppose that B
is an overring of R which contains an element of the form 1/8
for some nonunit 8 € S. Then 1/8 € ¢(B). Hence, ¢(B) is a
K-PVR by (1) and therefore B is a ¢~-PVR. Let x = a/b € T\R
for some a € R and b € 8. Then x' = b/a € T by Proposition
9(2). Since bja in R, a|sb in R by Corollary 7(2). Hence,
gb = ga in R for some g € R. Thus, x! = b/a = g/s € B since
s! € B,

COROLLARY 12 Let R be a ¢-PVR with maximal ideal M. Then
(1) . For every prime ideal P of R, P:P is a ¢-PVR.

(2). For every prime ideal P of ®(R), P:P is a K-PVR,

(3). For every prime ideal P of ¢(R), ®(R); is a K-PVR.

Proof: (1). If P is maximal, then the claim followa by
Proposition 10. Hence, assume that P is nonmaximal. Since P
is divided, P:P either contains an element of the form 1/s
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for some nonunit s € 8, and in this case P:P is a ¢-PVR by
Proposition 11; or P:P does not contain such an element, and
in this case it is a ¢-PVR since it equals R. (2). This
follows by a similar argument to that in (1). (3). Once
again, if P is maximal, then ¢(R), = ®(R) is a K-PVR. If P is
nonmaximal, then ¢(R), contains an element of the form 1l/s
for some nonunit s ¢ R\Nil(R) and therefore it is a K-PVR by
Proposition 11.

Recall that a ring B is called a chained ring if the
principal ideals of B are linearly ordered.

PROPOSITION 13 Let R be a ¢-PVR and let B be an overring of
R (resp., ¢(R)) which contains an element of the form 1/s for
8ome nonunit 8 € S (resp., s € R\Nil(R)). Then B is a
chained ring if and only if for every a,b € Nil(R)
(resp.,Nil(®(R)) either a|b in B or b|a in B.

Proof: We only need prove the converse. Suppose that B is an
overring of ¢(R). Let X,y € B such that neither

X € NI1(9(R)) nor y € Nil (®(R)) and x/y in B. Then

d = x'y € K\¢(R). Hence, d™ = xy™ € B by Proposition 11.
Thus, x = (xy?)y in B. Next, suppose that B is an overring
of R. Let x,y € B such that neither x € Nil(R) nor

Y € Ni1(R) and y/x in B. Since each d € B\R is a unit of B
by Proposition 11, we may assume that x,y € R. Since yi/x in
B, ylx in R, and therefore x|ys in R by Corollary 7(2).
Hence, ys = cx for some ¢ € R. Hence, y = (c/#)x. Thus,

x|y in B since c/s € B.

Given a ring R, then R’ denotes the integral closure of
R in T, and ¢(R)’ denotes the integral closure of $(R) in K.
The following result ig an analogue of [7, Lemma 17 and
Theorem 19). :

PROPOSITION 14 Let R be a ¢-PVR with maximal ideal M. Then
(1). R’ c M:M and R’ is a ¢~-PVR with maximal ideal M.

(2). O(R)' c ¢(M):9(M) and ®(R)’ is a K-PVR with maximal
ideal ¢(M).

Proof: (1). Let x € R'\R. Then x'¢R. For, if x' € R, then
x = 1/8 for some nonunit s € § which is impossible by [12,
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Theorem 15]). Since x™ ¢ R, ¢#(x™) ¢ ®(R) by Proposition 3(3),
and hence ¢(x)$(M) < ¢(M) by Lemma 6. Thus, xM < M. Hence,
X € M:M and M is a prime ideal of R’ (observe that if zw € M
for some z,w € T, then either z € Mor w € M since M is
¢-strongly prime). Since R c R’ satisfies the INC condition
by [12, Theorem 47}, M is the maximal ideal of R. Hence,

R' is a ¢-PVR. (2). Apply a similar argument as in (1).

Our final result is an analogue of {11, Proposition
2.71, (9, Proposition 4.2), and [7, Theorem 21].

PROPOSITION 15 Let R be a ¢-PVR with maximal ideal M. Then
(1). Every overring of R is a ¢~PVR if and only if R’ = M:M.
(2). Every overring of ¢(R) is a K-PVR if and only if

®(R)' = O(M):d(M).

Proof: (1). Let C be an overring of R that does not contain
an element of the form 1/s for some nonunit 8 € S. Then
observe that C ¢ M:M, and use a similar argument as in {7,
Theorem 21}. (2). Once again, let C be an overring of ¢(R)
that does not contain an element of the form 1/s for some
nonunit 8 € R\Nil(R). Then observe that C c o(M):d(M), and
use a similar argument as in the proof of (7, Theorem 21].
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