On Φ-Pseudo-Valuation Rings

AYMAN BADAWI Department of Mathematics and Computer Science, Birzeit University, P.O. Box 14, Birzeit WestBank, Palestine, via Israel.

1 INTRODUCTION

Throughout this paper, all rings are commutative with identity and if R is a ring, then Z(R) denotes the set of zerodivisors of R and Nil(R) denotes the set of nilpotent elements of R. Our main purpose is to provide another generalization of pseudo-valuation domains (as introduced in [10]) to the context of arbitrary rings (with Z(R)possibly nonzero). Recall from [10] that an integral domain R with quotient field K is called a pseudo-valuation domain (PVD) in case each prime ideal P of R is strongly prime (or a strong prime), in the sense that $xy \in P$, $x \in K$, $y \in K$ implies that either $x \in P$ or $y \in P$. Anderson, Dobbs, and the author in [7] generalized the study of pseudo-valuation domains to the context of arbitrary rings. Recall from [7] that a prime ideal P of a ring R is said to be strongly prime (or a strong prime) if aP and bR are comparable for all $a,b \in R$. If R is an integral domain this is equivalent to the original definition of strongly prime as introduced by Hedstrom and Houston in [10] (cf. [1, Proposition 3.1], [2 Proposition 4.2], and [5, Proposition3]). If each prime ideal of R is strongly prime, then R is called a pseudo-valuation ring (PVR).

PO Box 26666, Sharjah, United Arab Emiirates ص.ب. ٢٦٦٦٦، الشارقة، الإمارات العربية المتحدة

2 RESULTS

First, recall from [6] and [8] that a prime ideal of R is called divided if it is comparable to every principal ideal of R; equivalently, if it is comparable to every ideal of R. If every prime ideal of R is divided, then R is called a divided ring.

In the following proposition, we show that if a ring R admits a strongly prime ideal, then Nil(R) is a strongly prime ideal and thus Nil(R) is a divided prime. This result justifies our focus in studying pseudo-valuation rings to be restricted to rings R where Nil(R) is a divided prime.

PROPOSITION 0 Let P be a strongly prime ideal of a ring R. Then the prime ideals of R contained in P are strongly prime and are linearly ordered. In particular, Nil(R) is strongly prime and therefore it is a divided prime.

Proof: Let Q be a prime ideal of R contained in P. By applying the same argument as in the proof of [7, Theorem 2], we conclude that Q is strongly prime. By [7, Lemma 1], P is comparable to every prime ideal of R and the prime ideals of R contained in P are linearly ordered. Hence, Nil(R) is prime and therefore it is strongly prime and divided.

Now we state our definition of $\boldsymbol{\varphi}\text{--pseudo--valuation}$ rings.

DEFINITION Let R be a ring such that Nil(R) is a divided prime, let S be the set of nonzerodivisors of R, let $T=R_s$ be the total quotient ring of R, and let $K = R_{\text{Hil}(R)}$. Define φ : $T \longrightarrow K$ by $\phi(a/b) = a/b$ for every $a \in R$ and $b \in S$. Then ϕ is a ring homomrphism from T into K, and $\boldsymbol{\varphi}$ restricted to R is also a ring homomorphism from R into K given by $\phi(x) = x/1$ for every $x \in R$. Also, observe that $\phi(R)$ is a subring of K with identity. A prime ideal Q of $\phi(R)$ is called K-strongly prime if $xy \in Q$, $x \in K$, $y \in K$ implies that either $x \in Q$ or $y \in Q$. If each prime ideal of $\phi(R)$ is K-strongly prime, then $\phi(R)$ is called a K-pseudo-valuation ring (K-PVR). A prime ideal P of R is called ϕ -strongly prime, if $\phi(P)$ is a Kstrongly prime ideal of $\phi(R)$. If each prime ideal of R is ϕ -strongly prime then R is called a ϕ -pseudo-valuation ring (ϕ -PVR). Observe that Q is a prime ideal of $\phi(R)$ if and only if $Q = \phi(P)$ for some prime ideal P of R, and R is a ϕ -PVR if and only if $\phi(R)$ is a K-PVR.

Throughout this section, R denotes a commutative ring with identity such that Nil(R) is a divided prime. Given a ring R, let $K = R_{Nil(R)}$ and $T = R_s$, where S is the set of nonzerodivisors of R.

Observe that an integral domain R is a PVD if and only if it is a ϕ -PVR. In fact, in Corollary 7, we show that a PVR (in the sense of [7]) is always a ϕ -PVR. Also, observe that a quasilocal zero-dimensional ring is a ϕ -PVR. The following is an example of a zero-dimensional ϕ -PVR that is not a PVR.

EXAMPLE 1 ([7, Remark 15]) Let K be a field, X,Y, and Z be indeterminates, and R = K[X,Y,Z] / (X^2,Y^2,Z^2) = K[x,y,z]. Then R is quasilocal zero-dimensional with maximal ideal Nil(R) = (X,Y,Z) / (X^2,Y^2,Z^2) = (x,y,z); hence R is a ϕ -PVR. However, R is not a PVR since xz \notin yR and y \notin xNil(R).

PROPOSITION 2 For a ring R, we have the following: (1) Ker (ϕ) is contained in Nil(R).

(2) $\phi(R)$ is an integral domain if and only if for every nonzero $w \in Nil(R)$ there exists a $z \in Z(R) \setminus Nil(R)$ such that zw = 0 in R.

Proof: (1). Let $x \in \text{Ker}(\varphi)$. Then x = a/b for some $a \in R$ and $b \in S$ such that $\varphi(a/b) = a/b = 0/1$ in K. Hence, za = 0 in R for some $z \in Z(R) \setminus Nil(R)$. Thus, $a \in Nil(R)$ since Nil(R) is prime. Hence, $x = a/b = w \in Nil(R)$ since $b \in S$ and Nil(R) is divided. (2). Suppose that $\varphi(R)$ is an integral lomain. Since $R/\ker(\varphi) \approx \varphi(R)$ and $\ker(\varphi) \subset Nil(R)$, we have $\ker(\varphi) = Nil(R)$, and the claim is now clear. Conversely, since for every nonzero $w \in Nil(R)$ there is a $z \in Z(R) \setminus Nil(R)$ such that zw = 0 in R, we have $\ker(\varphi) = Nil(R)$. Since Nil(R) is prime and $R/Nil \approx \varphi(R)$, $\varphi(R)$ is an integral domain.

ROPOSITION 3 For a ring R, we have the following: 1). Nil(T) = Nil(R) and Nil(K) = Nil($\phi(R)$) = $\phi(Nil(R))$. 2). Let $x \in Nil(K)$ and write x=a/b for some $a \in R$ and $\in R\backslash Nil(R)$. Then $a \in Nil(R)$ and x = a/b = w/1 in K for ome $w \in Nil(R)$.

- (3). Let $x \in K$ and write x = a/b for some $a \in R$ and $b \in R \setminus Nil(R)$. If a/b = i/1 in K for some $i \in R$, then $b \mid a$ in R; in particular, a = (i+w)b in R for some $w \in Nil(R)$, and therefore a is contained in every prime ideal of R which contains i.
- (4). Let $x \in R$ and $y \in R \setminus R$. If x/1 = y/1 in K, then x = y in R for some unit u of R; in particular, x = y in R.

Proof: (1). Note that Nil(T) = Nil(R) since Nil(R) is a divided prime ideal of R. For the second equality, we only need show that $Nil(K) \subset Nil(\phi(R))$. Let $x \in Nil(K)$ and write x = a/b for some $a \in R$ and $b \in R \setminus Nil(R)$. Since Nil(R) is prime, it follows that $a \in Nil(R)$. Since Nil(R) is a divided prime and $a \in Nil(R)$ and $b \in R \setminus Nil(R)$, x = a/b = w/1 for some $w \in Nil(R)$. Thus, $x \in Nil(\phi(R))$. (2). Clear by the proof of (1). (3). Since a/b = i/1 in K, z(a-bi) = 0 in R for some $z \in R \setminus Nil(R)$. Thus, $a-bi = c \in Nil(R)$ since Nil(R) is prime. Since $b \in R \setminus R(R)$ and Nil(R) is a divided prime, c = wb for some $w \in Nil(R)$. Hence, a-bi = c = wb. Thus, a = (i+w)b. (4). Since x/1 = y/1 in K, z(x-y) = 0 in R for some $z \in R \setminus Nil(R)$. Thus, $x-y = w \in Nil(R)$. Once again, since y \in R\Nil(R), w = dy for some d \in Nil(R). Hence, x-y = w = dy. Thus, x = (1+d)y. Since 1+d is a unit of R, the claim is clear.

In light of the above proposition, observe that K is quasilocal, zero-dimensional, and a K-PVR with maximal ideal Nil($\phi(R)$). In general, let A be a divided ring and I be an ideal of A, and let R=A/I. Then K is a K-PVR with maximal ideal Nil($\phi(Rad(I)/I)$), where Rad(I) is the radical ideal of I in A.

The following result is an analogue of [10, Corollary 1.3] and [7, Lemma 1], also see [4, Proposition 1].

PROPOSITION 4 Let P be a ϕ -strongly prime ideal of R. Then P (resp., $\phi(P)$) is a divided prime. In particular, if R is a ϕ -PVR, then R (resp., $\phi(R)$) is a divided ring and hence is quasilocal.

Proof: Deny. Then for some ideal I of R, there is an i \in I\P and a p \in P\I. Since Nil(R) \subset P, i \in R\Nil(R). Hence,

 $(p/i)(i/1) = p/1 \in \phi(P)$. Since $i/1 \notin \phi(P)$ by Proposition 3(4), $p/i \in \phi(P)$. Hence, $i \mid p$ in R by Proposition 3(3). Thus, $p \in I$ which is a contradiction.

The following result is an analogue of [10, Theorem 1.4], [2, Proposition 4.8], [4, Proposition2], and [7, Theorem 2].

PROPOSITION 5 1. Let P be a ϕ -strongly prime ideal of R and suppose that Q is a prime ideal of R contained in P. Then Q is ϕ -strongly prime. In particular, R is a ϕ -PVR if and only if some maximal ideal of R is ϕ -strongly prime.

2. Let P be a K-strongly prime ideal of $\phi(R)$. If Q is a prime ideal of $\phi(R)$ contained in P, then Q is K-strongly prime. In particular, $\phi(R)$ is a K-PVR if and only if some maximal ideal of $\phi(R)$ is K-strongly prime.

Proof: (1). Suppose that $xy \in \varphi(Q)$ for some $x \in K$ and $y \in K$. If $xy \in Nil(\varphi(R))$, then either $x \in Nil(\varphi(R)) \subset \varphi(Q)$ or $y \in Nil(\varphi(R)) \subset \varphi(Q)$ since K is a K-PVR with maximal ideal $Nil(\varphi(R))$. Hence, we may assume that $xy \in Nil(\varphi(R))$ and $x \in K \setminus \varphi(R)$. Since $xy \in \varphi(P)$ and $x \in K \setminus \varphi(R)$, we must have $y \in \varphi(P)$. Since $x(y^2/xy) = y \in \varphi(P)$ and $x \in K \setminus \varphi(R)$, we must have $y^2/xy = p/1 \in \varphi(P)$ for some $p \in P$. Thus, $y^2 = (xy)(p/1)$ in K. Since $xy \in \varphi(Q)$, $y^2 \in \varphi(Q)$. Thus, $y \in \varphi(Q)$. (2). Since every prime ideal of $\varphi(R)$ is of the form $\varphi(G)$ for some prime ideal $\varphi(R)$ of $\varphi(R)$ is of the form $\varphi(R)$.

The following lemma is an analogue of [10, Proposition 1.2]. Since the proof is exactly the same as in [10], we leave the proof to the reader.

LEMMA 6 A prime ideal P of R is ϕ -strongly prime if and only if $x^{-1}\phi(P) \subset \phi(P)$ for every $x \in K \setminus \phi(R)$.

COROLLARY 7 (1). A prime ideal P of R is ϕ -strongly prime if and only if for every a,b \in R\Nil (R), either a|b in R or aP \subset bP.

- (2). A ring R is a ϕ -PVR if and only if for every a,b \in R\Nil(R), either a|b in R or b|ac in R for every nonunit c of R.
- (3). If R is a PVR, then R is a ϕ -PVR.

106 Badawi

Proof: (1). Suppose that P is \$\phi\$-strongly prime and $a,b \in R \setminus Nil(R)$ such that a/b in R. Then $b/a \in K \setminus \phi(R)$ by Proposition 3(3). Let $p \in P$. Then (a/b)(p/1) = q/1 in K for some q & P by Lemma 6. Thus, ap = (q+w)b in R for some w ∈ Nil(R) by Proposition 3(3). Hence, ap ∈ bP in R. Thus, aP c bP in R. Conversely, suppose that for every $a,b \in R \setminus Nil(R)$ either a b or aP c bP. Let $x \in K \setminus \Phi(R)$. Then x = b/a for some $a,b \in R \setminus R(R)$ (observe that $b \in Nil(R)$ since Nil(R) is divided). Hence, a/b in R by Proposition 3(3). Thus, $aP \subset bP$ in R. Hence, $(a/b) \phi(P) \subset \phi(P)$. Thus, P is \$\phi\$-strongly prime by Lemma 6. (2). If R is a \$\phi\$-PVR with maximal ideal M, then the claim is clear by (1). Conversely, since for every a,b ∈ R either a b or b a for some n,m ≥ 1, the prime ideals of R are linearly ordered by [5, Theorem 1]. Hence R is quasilocal with maximal ideal M. Once again, the claim is clear by (1). (3). This is clear by [7, Theorem 5].

REMARK 8 It was shown in [7, Theorem 5] that a ring R is a PVR if and only for every a,b \in R, either a|b or b|ac for every nonunit c of R. Thus, Corollary 7(2) gives a clear difference between a PVR and a ϕ -PVR.

The first part of the following proposition follows easily since the prime ideals of a divided ring R are linearly ordered and Z(R) is a union of prime ideals of R.

PROPOSITION 9 Let R be a divided ring. Then (1). Z(R) is a prime ideal of R.

(2). If x ∈ T\R, then x-1 ∈ T.

Proof: (2). Let $x = a/b \in T \setminus R$ for some $a \in R$ and $b \in S$. Then $a \in S$ since R is divided. Hence, $x^{-1} = b/a \in T$.

Given an ideal I of R, then I:I = $\{x \in T : xI \subset I\}$ and $\phi(I) : \phi(I) = \{x \in K : x\phi(I) \subset \phi(I)\}$

PROPOSITION 10 Let R be a quasilocal ring with maximal ideal M. Then

- (1). R is a ϕ -PVR if and only if M:M is a ϕ -PVR with maximal ideal M.
- (2). $\phi(R)$ is a K-PVR if and only if $\phi(M)$: $\phi(M)$ is a K-PVR with maximal ideal $\phi(M)$.

Proof: (1). Suppose that R is a ϕ -PVR. Let $x \in M:M\setminus R$. Then $\phi(x) \in K\setminus \phi(R)$ by Proposition 3(3). Since x is a unit of T by Proposition 9(2), $\phi(x^{-1})\phi(M) = \phi(x)^{-1}\phi(M) \subset \phi(M)$ by Lemma 6. Thus, $x^{-1} \in M:M$. Thus, x is a unit of M:M. Hence, M is the maximal ideal of M:M. Thus, M:M is a ϕ -PVR since $\phi(M)$ is K-strongly prime. The converse is clear. (2). This follows by a similar argument to that in (1).

Recall that a ring B is called an overring of R (resp., $\phi(R)$) if R \subset B \subset T (resp., $\phi(R)$ \subset B \subset K).

PROPOSITION 11 Suppose that R is a ϕ -PVR with maximal ideal M.

- (1). If B is an overring of $\phi(R)$ which contains an element of the form 1/s for some nonunit $s \in R \setminus R(R)$, then $x^{-1} \in B$ for every $x \in K \setminus \Phi(R)$. Furthermore, B is a K-PVR.
- (2). If B is an overring of R which contains an element of the form 1/s for some nonunit $s \in S$, then $x^{-1} \in B$ for every $x \in T \setminus R$. Furthermore B is a ϕ -PVR.

Proof: (1). Suppose that B is an overring of $\phi(R)$ which contains an element of the form 1/s for some nonunit $s \in R \setminus R(R)$. Let $x \in K \setminus \Phi(R)$. Then $x^{-1}(s/1) \in \Phi(M) \subset \Phi(R)$ by Lemma 6. Hence, $x^{-1} = (x^{-1}s)/s \in B$ since $s^{-1} \in B$. Now, let N be a maximal ideal of B and $xy \in N$ for some $x,y \in K$ with $x \in K \setminus \Phi(R)$. Then $y = x^{-1}(xy) \in N$ since $x^{-1} \in B$. Thus, N is K-strongly prime. Hence, B is a K-PVR. (2). Suppose that B is an overring of R which contains an element of the form 1/s for some nonunit $s \in S$. Then $1/s \in \Phi(B)$. Hence, $\Phi(B)$ is a K-PVR by (1) and therefore B is a Φ -PVR. Let $x = a/b \in T \setminus R$ for some $a \in R$ and $b \in S$. Then $x^{-1} = b/a \in T$ by Proposition 9(2). Since b/a in R, a/s in R by Corollary 7(2). Hence, $s^{-1} \in B$.

COROLLARY 12 Let R be a \$\phi - PVR with maximal ideal M. Then

- (1). For every prime ideal P of R, P:P is a φ-PVR.
- (2). For every prime ideal P of φ(R), P:P is a K-PVR.
- (3). For every prime ideal P of $\phi(R)$, $\phi(R)$, is a K-PVR. Proof: (1). If P is maximal, then the claim follows by Proposition 10. Hence, assume that P is nonmaximal. Since P is divided, P:P either contains an element of the form 1/s

108 Badawi

for some nonunit $s \in S$, and in this case P:P is a ϕ -PVR by Proposition 11; or P:P does not contain such an element, and in this case it is a ϕ -PVR since it equals R. (2). This follows by a similar argument to that in (1). (3). Once again, if P is maximal, then $\phi(R)_r = \phi(R)$ is a K-PVR. If P is nonmaximal, then $\phi(R)_r$ contains an element of the form 1/s for some nonunit $s \in R \setminus Nil(R)$ and therefore it is a K-PVR by Proposition 11.

Recall that a ring B is called a chained ring if the principal ideals of B are linearly ordered.

PROPOSITION 13 Let R be a \$\phi - PVR and let B be an overring of R (resp., $\phi(R)$) which contains an element of the form 1/s for some nonunit $s \in S$ (resp., $s \in R \setminus Nil(R)$). Then B is a chained ring if and only if for every a, b & Nil(R) (resp., Nil($\phi(R)$) either a|b in B or b|a in B. Proof: We only need prove the converse. Suppose that B is an overring of $\phi(R)$. Let $x,y \in B$ such that neither $x \in Nil(\phi(R))$ nor $y \in Nil(\phi(R))$ and x/y in B. Then $d = x^{-1}y \in K \setminus \Phi(R)$. Hence, $d^{-1} = xy^{-1} \in B$ by Proposition 11. Thus, $x = (xy^{-1})y$ in B. Next, suppose that B is an overring of R. Let x,y & B such that neither x & Nil(R) nor y ∈ Nil(R) and y/x in B. Since each d ∈ B\R is a unit of B by Proposition 11, we may assume that $x,y \in R$. Since y/x in B, y/x in R, and therefore x ys in R by Corollary 7(2). Hence, ys = cx for some $c \in R$. Hence, y = (c/s)x. Thus, x y in B since c/s & B.

Given a ring R, then R' denotes the integral closure of R in T, and $\phi(R)$ ' denotes the integral closure of $\phi(R)$ in K. The following result is an analogue of [7, Lemma 17 and Theorem 19].

PROPOSITION 14 Let R be a ϕ -PVR with maximal ideal M. Then (1). R' \subset M:M and R' is a ϕ -PVR with maximal ideal M.

(2). $\phi(R)' \subset \phi(M):\phi(M)$ and $\phi(R)'$ is a K-PVR with maximal ideal $\phi(M)$.

Proof: (1). Let $x \in R' \setminus R$. Then $x^{-1} \notin R$. For, if $x^{-1} \in R$, then x = 1/s for some nonunit $s \in S$ which is impossible by [12,

Theorem 15]. Since $x^{-1} \in R$, $\varphi(x^{-1}) \in \varphi(R)$ by Proposition 3(3), and hence $\varphi(x)\varphi(M) \subset \varphi(M)$ by Lemma 6. Thus, $xM \subset M$. Hence, $x \in M:M$ and M is a prime ideal of R' (observe that if $zw \in M$ for some $z,w \in T$, then either $z \in M$ or $w \in M$ since M is φ -strongly prime). Since $R \subset R'$ satisfies the INC condition by [12, Theorem 47], M is the maximal ideal of R. Hence, R' is a φ -PVR. (2). Apply a similar argument as in (1).

Our final result is an analogue of [11, Proposition 2.7], [9, Proposition 4.2], and [7, Theorem 21].

PROPOSITION 15 Let R be a ϕ -PVR with maximal ideal M. Then

- (1). Every overring of R is a ϕ -PVR if and only if R' = M:M.
- (2). Every overring of $\phi(R)$ is a K-PVR if and only if $\phi(R)' = \phi(M) : \phi(M)$.

Proof: (1). Let C be an overring of R that does not contain an element of the form 1/s for some nonunit $s \in S$. Then observe that $C \subset M:M$, and use a similar argument as in [7, Theorem 21]. (2). Once again, let C be an overring of $\phi(R)$ that does not contain an element of the form 1/s for some nonunit $s \in R \setminus R(R)$. Then observe that $C \subset \phi(M):\phi(M)$, and use a similar argument as in the proof of [7, Theorem 21].

ACKNOWLEDGMENT

I am very grateful to the referee for his many corrections.

REFERENCES

- [1] D.F. Anderson, Comparability of ideals and valuation overrings, Houston J. Math. 5(1979), 451-463.
- [2] D.F. Anderson, When the dual of an ideal is a ring, Houston J. Math. 9(1983), 451-463.
- [3] D.F. Anderson and D.E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math. 32 (1980), 362-384.
- [4] A. Badawi, A visit to valuation and pseudo-valuation domains, in Commutative Ring Theory, Lecture Notes in Pure and Appl. Math., Vol. 171 (1995), 155-161, Marcel Dekker, Inc., New York/Basel.

- [5] A. Badawi, On domains which have prime ideals that are linearly ordered, Comm. Algebra 23 (1995), 4365-4373.
- [6] A. Badawi, On divided commutative rings, to appear in Comm.Algebra.
- [7] A. Badawi, D.F. Anderson, D.E. Dobbs, Pseudo-valuation rings, Proceedings of the Second International Conference on Commutative Rings, Lecture Notes in Pure and Appl. Math., Vol. 185(1997), 57-67, Marcel Dekker, Inc., New York/Basel.
- [8] D.E. Dobbs, Divided rings and going-down, Pacific J. Math., 67(1976), 353-363.
- [9] D.E. Dobbs, Coherence, ascent of going down, and pseudo-valuation domains, Houston J. Math. 4(1978), 551-567.
- [10] J.R. Hedstrom and E.G. Houston, Pseudo-valuation domains, Pacific J. Math. 75(1978), 137-147.
- [11] J. R. Hedstrom and E.G. Houston, Pseudo-valuation domains, II, Houston J. Math. 4(1978), 199-207.
- [12] I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicag Press, Chicago, 1974.